50 research outputs found

    Development of a Three-Dimensional In Vitro Model for Longitudinal Observation of Cell Behavior: Monitoring by Magnetic Resonance Imaging and Optical Imaging

    Get PDF
    Purpose: The aim of this study is the development of a three-dimensional multicellular spheroid cell culture model for the longitudinal comparative and large-scale screening of cancer cell proliferation with noninvasive molecular imaging techniques under controlled and quantifiable conditions. Procedures: The human glioblastoma cell line Gli36ΔEGFR was genetically modified to constitutively express the fluorescence protein mCherry, and additionally labeled with iron oxide nanoparticles for high-field MRI detection. The proliferation of aggregates was longitudinally monitored with fluorescence imaging and correlated with aggregate size by light microscopy, while MRI measurements served localization in 3D space. Irradiation with γ-rays was used to detect proliferational response. Results: Cell proliferation in the stationary three-dimensonal model can be observed over days with high accuracy. A linear relationship of fluorescence intensity with cell aggregate size was found, allowing absolute quantitation of cells in a wide range of cell amounts. Glioblastoma cells showed pronounced suppression of proliferation for several days following high-dose γ-irradiation. Conclusions: Through the combination of two-dimensional optical imaging and 3D MRI, the position of individual cell aggregates and their corresponding light emission can be detected. This allows an exact quantification of cell proliferation, with a focus on very small cell amounts (below 100 cells) using high resolution noninvasive techniques as a well-controlled basis for further cell transplantation studies

    Sensitive Dual Color In Vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase

    Get PDF
    Background: Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the colorcoupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RE8, has been developed and used in combination with the green click beetle luciferase, CBG99. Principal Findings: Human embryonic kidney cells (HEK293) were transfected with vectors that expressed red Ppy RE8 and green CBG99 luciferases. Populations of red and green emitting cells were mixed in different ratios. After addition of the shared single substrate, D-luciferin, bioluminescent (BL) signals were imaged with an ultrasensitive cooled CCD camera using a series of band pass filters (20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that expressed the two luciferases were injected at different depth in the animals. Spectrally-separate images and quantification of the dual BL signals in a mixed population of cells was achieved when cells were either injected subcutaneously or directly into the prostate. Significance: We report here the re-engineering of different luciferase genes for in vitro and in vivo dual color imaging applications to address the technical issues of using dual luciferases for imaging. In respect to previously used dual assays

    Tumor Necrosis Factor-α +489G/A gene polymorphism is associated with chronic obstructive pulmonary disease

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by a chronic inflammatory process, in which the pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α is considered to play a role. In the present study the putative involvement of TNF-α gene polymorphisms in pathogenesis of COPD was studied by analysis of four TNF-α gene polymorphisms in a Caucasian COPD population. METHODS: TNF-α gene polymorphisms at positions -376G/A, -308G/A, -238G/A, and +489G/A were examined in 169 Dutch COPD patients, who had a mean forced expiratory volume in one second (FEV1) of 37 ± 13%, and compared with a Dutch population control group of 358 subjects. RESULTS: The data showed that the TNF-α +489G/A genotype frequency tended to be different in COPD patients as compared to population controls, which was due to an enhanced frequency of the GA genotype. In line herewith, carriership of the minor allele was associated with enhanced risk of development of COPD (odds ratio = 1.9, p = 0.009). The other TNF-α gene polymorphisms studied revealed no discrimination between patients and controls. No differences in the examined four TNF-α polymorphisms were found between subtypes of COPD, which were stratified for the presence of radiological emphysema. However, comparison of the COPD subtypes with controls showed a significant difference in the TNF-α +489G/A genotype in patients without radiological emphysema (χ(2)-test: p < 0.025 [Bonferroni adjusted]), while no differences between COPD patients with radiological emphysema and controls were observed. CONCLUSION: Based on the reported data, it is concluded that COPD, and especially a subgroup of COPD patients without radiological emphysema, is associated with TNF-α +489G/A gene polymorphism

    Association study of functional genetic variants of innate immunity related genes in celiac disease

    Get PDF
    BACKGROUND: Recent evidence suggest that the innate immune system is implicated in the early events of celiac disease (CD) pathogenesis. In this work for the first time we have assessed the relevance of different proinflammatory mediators typically related to innate immunity in CD predisposition. METHODS: We performed a familial study in which 105 celiac families characterized by the presence of an affected child with CD were genotyped for functional polymorphisms located at regulatory regions of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes. Familial data was analysed with a transmission disequilibrium test (TDT) that revealed no statistically significant differences in the transmission pattern of the different genetic markers considered. RESULTS: The TDT analysis for IL-1α, IL-1β, IL-1RN, IL-18, and MCP-1 genes genetic variants did not reveal biased transmission to the affected offspring. Only a borderline association of RANTES promoter genetic variants with CD predisposition was observed. CONCLUSION: Our results suggest that the analysed polymorphisms of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes do not seem to play a major role in CD genetic predisposition in our population

    Impaired Vascular Contractility and Aortic Wall Degeneration in Fibulin-4 Deficient Mice: Effect of Angiotensin II Type 1 (AT1) Receptor Blockade

    Get PDF
    Medial degeneration is a key feature of aneurysm disease and aortic dissection. In a murine aneurysm model we investigated the structural and functional characteristics of aortic wall degeneration in adult fibulin-4 deficient mice and the potential therapeutic role of the angiotensin (Ang) II type 1 (AT1) receptor antagonist losartan in preventing aortic media degeneration. Adult mice with 2-fold (heterozygous Fibulin-4+/R) and 4-fold (homozygous Fibulin-4R/R) reduced expression of fibulin-4 displayed the histological features of cystic media degeneration as found in patients with aneurysm or dissection, including elastin fiber fragmentation, loss of smooth muscle cells, and deposition of ground substance in the extracellular matrix of the aortic media. The aortic contractile capacity, determined by isometric force measurements, was diminished, and was associated with dysregulation of contractile genes as shown by aortic transcriptome analysis. These structural and functional alterations were accompanied by upregulation of TGF-β signaling in aortas from fibulin-4 deficient mice, as identified by genome-scaled network analysis as well as by immunohistochemical staining for phosphorylated Smad2, an intracellular mediator of TGF-β. Tissue levels of Ang II, a regulator of TGF-β signaling, were increased. Prenatal treatment with the AT1 receptor antagonist losartan, which blunts TGF-β signaling, prevented elastic fiber fragmentation in the aortic media of newborn Fibulin-4R/R mice. Postnatal losartan treatment reduced haemodynamic stress and improved lifespan of homozygous knockdown fibulin-4 animals, but did not affect aortic vessel wall structure. In conclusion, the AT1 receptor blocker losartan can prevent aortic media degeneration in a non-Marfan syndrome aneurysm mouse model. In established aortic aneurysms, losartan does not affect aortic architecture, but does improve survival. These findings may extend the potential therapeutic application of inhibitors of the renin-angiotensin system to the preventive treatment of aneurysm disease

    Association of polymorphisms of the tumour necrosis factor receptors I and II and rheumatoid arthritis.

    No full text
    OBJECTIVE: To assess the role of polymorphisms of the tumour necrosis factor (TNF) receptors, TNF-RI (p55) and TNF-RII (p75) in the susceptibility to and severity of rheumatoid arthritis (RA) in Dutch patients. METHODS: A total of 319 consecutive RA patients, and a cohort of 90 female RA patients with detailed 12-yr follow-up were genotyped for the TNF-RI exon 1 (+36 A to G) and TNF-RII 3' UTR (+1690 T to C) polymorphisms. RESULTS: The frequencies of the TNF-RI and TNF-RII polymorphisms were determined in both patient groups and healthy controls, but no significant differences were found. To determine the relationship of these polymorphisms to disease severity, the extent of joint damage in the cohort of 90 female RA patients was analysed. No differences in severity were observed. CONCLUSION: These TNF-RI and TNF-RII polymorphisms were not found to be associated with susceptibility to or severity of RA in the Dutch population
    corecore